Host-parasite Red Queen dynamics with phase-locked rare genotypes
نویسندگان
چکیده
Interactions between hosts and parasites have been hypothesized to cause winnerless coevolution, called Red Queen dynamics. The canonical Red Queen dynamics assume that all interacting genotypes of hosts and parasites undergo cyclic changes in abundance through negative frequency-dependent selection, which means that any genotype could become frequent at some stage. However, this prediction cannot explain why many rare genotypes stay rare in natural host-parasite systems. To investigate this, we build a mathematical model involving multihost and multiparasite genotypes. In a deterministic and controlled environment, Red Queen dynamics occur between two genotypes undergoing cyclic dominance changes, whereas the rest of the genotypes remain subordinate for long periods of time in phase-locked synchronized dynamics with low amplitude. However, introduction of stochastic noise in the model might allow the subordinate cyclic host and parasite types to replace dominant cyclic types as new players in the Red Queen dynamics. The factors that influence such evolutionary switching are interhost competition, specificity of parasitism, and degree of stochastic noise. Our model can explain, for the first time, the persistence of rare, hardly cycling genotypes in populations (for example, marine microbial communities) undergoing host-parasite coevolution.
منابع مشابه
Epidemiology of a Daphnia-Multiparasite System and Its Implications for the Red Queen
The Red Queen hypothesis can explain the maintenance of host and parasite diversity. However, the Red Queen requires genetic specificity for infection risk (i.e., that infection depends on the exact combination of host and parasite genotypes) and strongly virulent effects of infection on host fitness. A European crustacean (Daphnia magna)--bacterium (Pasteuria ramosa) system typifies such speci...
متن کاملA Matching-Allele Model Explains Host Resistance to Parasites
The maintenance of genetic variation and sex despite its costs has long puzzled biologists. A popular idea, the Red Queen Theory, is that under rapid antagonistic coevolution between hosts and their parasites, the formation of new rare host genotypes through sex can be advantageous as it creates host genotypes to which the prevailing parasite is not adapted. For host-parasite coevolution to lea...
متن کاملSex and the Red Queen
Negative frequency-dependent selection exerted by parasites and pathogens can generate a selective advantage for rare host genotypes. This mechanism, known as the Red Queen, is currently considered to be one of the most likely explanations for the predominance of sexual reproduction in natural populations. Even so, the extent to which the Red Queen can and does provide an advantage to sex in na...
متن کاملRed Queen strange attractors in host–parasite replicator gene-for-gene coevolution
We study a continuous time model describing gene-for-gene, host–parasite interactions among self-replicating macromolecules evolving in both neutral and rugged fitness landscapes. Our model considers polymorphic genotypic populations of sequences with 3 bits undergoing mutation and incorporating a ‘‘type II’’ non-linear functional response in the host–parasite interaction. We show, for both fit...
متن کاملRed Queen dynamics in multi-host and multi-parasite interaction system
In host-parasite systems, dominant host types are expected to be eventually replaced by other hosts due to the elevated potency of their specific parasites. This leads to changes in the abundance of both hosts and parasites exhibiting cycles of alternating dominance called Red Queen dynamics. Host-parasite models with less than three hosts and parasites have been demonstrated to exhibit Red Que...
متن کامل